Magnetic-Field Computation of a Novel 3-DOF Deflection-Type PM Motor with Analytical and Finite-Element Methods

نویسنده

  • Zheng LI
چکیده

Based on brief introduction of the operation principle and superior performance of the permanent-magnet (PM) deflection type three-degrees-of-freedom motors, one novel PM motor air-gap magnetic-field calculation schemes based on the analytical and finite-element methods are presented and scalar magnetic-flux density calculation formulae in the spherical coordinate are developed. A rotor magnetic-field model is built in a 3D finite-element software and computed with simulation to derive the flux-density distribution under different magnetization modes. The results obtained with these two methods are compared and validated. The theoretical analysis and computation results demonstrate the effectiveness of the designed structure; it is easy for the rotor to achieve a three-degree-of-freedom deflection motion, which provides references for further research and experimental design of the related motors or actuators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electromagnetic System Analysis and Improvement of a Novel 3-dof Deflection Type Permanent Magnet Motor

Original scientific paper This paper presents the electromagnetic analysis of a novel fluid damping based hybrid drive multi-degrees-of-freedom permanent magnet motor based on analytical and 3D finite element methods. The spatial magnetic field calculation model, torque analysis model, oil film model and electromagnetic-thermal coupling are presented and developed. Based on the simulation calcu...

متن کامل

Electromagnetic field analysis of novel low cogging force, linear switched reluctance motor, based on 2-D finite element method

This paper deals with electromagnetic design and 2-D (two-dimensional) magnetic field analysis of novel low force ripple linear switched reluctance (LSR) motor. The configuration that has been presented here has a higher number of rotor poles than stator poles, and the purpose of this configuration is to improve the force ripple, which is the weak point of LSRMs. In order to illustrate the ...

متن کامل

A Novel Technique on the Analytical Calculation of Open-Circuit Flux Density Distribution in Brushless Permanent-Magnet Motor

Both the cogging and electromagnetic torques depends on the shape of the flux density distribution in the airgap region. A two-dimensional (2-D) analytical method for predicting the open- circuit airgap field distribution in brushless permanent magnet motors, considering the direction of magnetization, i.e., radial or parallel, and the effect of real shape of stator slot-openings is presented i...

متن کامل

Design and Simulation of a Moving-magnet-type Linear Synchronous Motor for Electromagnetic Launch System

The Electromagnetic Aircraft Launch System (EMALS) offers significant benefits to the aircraft, ship, personnel, and operational capabilities. EMALS has such advantages as high thrust, good controllability, reusable, etc., as a launching motor, a double-side plate Permanent Magnet Linear Synchronous Motor (PMLSM) can provide high instantaneous thrust. This paper presents the design and analysis...

متن کامل

Significant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind

This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014